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Introduction 
The integral  transform method is an efficient method to 

solve, differential equations ,system of differential equations, 

integral equations ,system, of integral equations and so on 

.Recently, Tarig M. ELzaki introduced a new transform and 

named as Tarig transform , which is defined by the following 

formula.   
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While Lapace transform is defined by the following formula  
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The sufficient conditions for the existence of Tarig 

transform are that ( )f t  be piecewise continuous and of 

exponential order, this means that Tarig transform may or may 

not exist.  

Tarig transform can certainly treat all problems that are 

usually treated by the well-known and extensively used Laplace 

transform. 

Indeed as the next theorem shows Tarig transform is closely 

connected with Laplace transform.  

Theorem (1) 
Let                               
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Laplace transform ( ).F s Then: Tarig transform ( )G u  of 

( )f t  is given by                     
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Proof:  

            Let ( ) ,f t A∈  then for 0u ≠ ,    
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 Let ,w ut=  then we have:  
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Also   we have that ( ) ( )1 1G F=   so that both Tarig and Laplace 

transform must coincide at  1.u s= =  

Tarig Transform of Derivatives and Integrals 

Being restatement of the relation(2) will serve as our 

working definition, since Laplace transform of sin t  is 
2

1
,

1 s+
 

then view of (2) its Tarig transform is 
2

4
.

1

u

u+
 This  exemplifies 

the duality between those two transforms.  

 

Theorem (2):          

Let ( ) ( )F s and G u′ ′  be Laplace Tarig transform of 

the derivative of ( ).f t then: 
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Where 
( ) ( )n

G u  is Tarig transform of the nth derivative 

( ) ( )n
f t  of the function ( ).f t  

Proof: 

(i) Since Laplace transform of the derivatives of ( )f t  is 
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Then: 
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The generalization to nth order derivative in (iii) can be 

proved by using mathematical induction. 

Theorem (3) 

Let  ( ) ( )G u and F s′ ′  denote Tarig and Laplace transform 

of the definite integral of   ( ) ( ) ( )
0

.

t

f t h t f dτ τ= ∫     then:   
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Proof: 
      By definition of Laplace transform. 
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Theorem (4): 

 Let ( )G u  is Trig transform of ( )f t  then:  
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Proof: 

        By definition of Tarig transform we have:  
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Theorem (5): 

            Let    ( )G u  is Tarig transform of ( )f t  then:  
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Proof: 
(i) From theorem (4), we have: 
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The proof of (ii) is similar to the proof of (i). 

Theorem (6) (Convolution) 

Let   ( ) ( ) ,f t and g t be in A having Laplace transform 

( )F s  and  ( ) ,G s  and Tarig transform ( )M u   and  ( )N u  

.Then:  

                               ( )( ) ( ) ( )T f g t u M u N u ∗ =   

Proof: 

      Firs recall that Laplace transforms of ( )f g∗  is given by 

                                    ( )( ) ( ) ( )L f g t F s G s ∗ =   

Now, since, by the duality relation (2) we have,  
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Traig transform of  ( )f g∗  is obtained as follows: 

( )( ) ( ) ( )
2 2

1 1
.F G

u u
T f g t u M u N u

u

   
   
    ∗ = =   

Example (1) 

     Consider the first – order ordinary differential equation,  

                          ( ) , 0
dx

Px f t t
dt

+ = >                                                                        

                             ( )0x a=               (4)                                                                           

Where p and a  are constants and ( )f t  is an external 

input function so that its Laplace and Tarig Transforms are exist. 

 First Solution by Laplace Transform: 
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Where that ( )X s  and F ( )s  are Laplace transform of ( )x t  

and ( ).f t Then  ( )
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In particular if ( )f t c= ≡  constant, then the Solution of (3) 

becomes:  

                           ( ) ptc c
x t a e

p p

− 
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Second Solution By Tarig Transform: 

Using Tarig transform of equation (3) we get  
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1
0

X u
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Where ( )X u  and ( )F u  are Tarig transform of ( )x t  and 

( )f t , then:  
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   The inverse Tarig transform leads to the solution in the form. 

               ( ) ,ptc c
x t a e

p p

− 
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 
  When ( )f t c=  

Example (2) 

                Consider the ordinary differential equation with 

variable coefficients (Bessl's equation).                  

               ( )0 , 0ty y ty y′′ ′+ + = = 1             (5)                                                              

Solution by Laplace Transform: 

[ ] [ ] [ ] 0L t y L y L t y′′ ′+ + = , and  

( ) ( ) ( )0 0 0 0
d dY

sY sy y sY y
ds ds

′ − − − + − − = 
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   Where Y  is Laplace transform of y  inverting 

we find:     ( ) ( )0y t AJ t=  

Solution by Tarig Transform:  

Take Tarig transform of equation (5) we have,     
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Where ( )G u  is Tarig transform of .y  Let ( )0 ,y c′ =  we 

have:  

( ) ( ) ( ) ( )5 41u u G u u G u′+ = −     And      
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Integrating two sides we get:  ( )
4

ln ln ,
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 where A  is a 

constant.  

Inversion gives the formal solution:     ( ) ( )0y t AJ t=  

This is the same solution. 

Example (3): 

          Consider the following linear integral differential 

equation.  

( ) ( ) ( ) ( ) ( )
0

cos , 0 1

t

f t t f t d fδ τ τ τ′ = + − =∫      (6)                               

Solution By Laplace Transform:  

By taking Laplace transform of (6), we get.  

( ) ( ) ( )2
0 1

1

s
sF s f F s
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+
  Or   ( ) 3

2 2
F s

s s
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Apply the inverse Laplace transform to find the solution of (6) in 

the form: 

( ) 2
2f t t= +  

Solution by Tarig Transform:  
By using Tarig Transform to eq(6)we get:     
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1 1
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G u u
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And      ( ) ( )
4

4
2

1

u
G u u G u

u
− =

+
    Or    ( ) 52 2G u u u= +  

Inverting this equation we obtain the solution in the form:   

( ) 22f t t= +  

This   is the same solution. 

Conclusions: 
Tarig transform is a convenient tool for solving differential 

equations in the time domain without the need for performing an 

inverse Tarig transform and the connection of Tarig transform 

with Laplace transform goes much deeper. 
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 Appendix Tarig Transform of Some Functions 
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