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Abstraet. The rare metal-bearing Tawlah granite pluton, in the northwestern part of the Arabian Shield is a late
Neaoproterozoic (607 Ma) post-collision alkaline A-type granite intrusion. It was emplaced in an island arc
assemblage of metavolcano-sedimentary association. The contact between the granite and the country rocks is
irregular, diffused and locally marked by silicification and abundant quartz veins, which affect both the country
rocks and the granite. Two mineralogically different granite varieties were recorded in the pluton: i) quartz
syenite, which occupies the central part of the granite mass and consists of microcline (up to #0%), albite,
quartz and biotite in addition to minor accessory zircon, fluorite and opaques, and ii) albite granite that
occupies the outer margin of the granite mass and consists of albite, quartz, microcline and abundant
disseminations of accessory minerals (5-15%) represented by zircon, thorite, titanite, fluorite, apatite and many
deep brown to black opaque grains. The field observations along with the replacement textural evidence
strongly suggest a hydrothermal origin of the alhite granite. Geochemical data along with Nd isotopes (£na =
+4.2 - +5.9) indicate that the origin of the Tawlah granite involved partial melting of juvenile crustal source
followed by fractional crystallization. There is a greal chemical heterogeneity of the Tawlah granite varieties in
terms of their major and trace element contents. The quartz syenite is peralkaline and shows a relatively
homogenous and restricted composition with high Fe/Mg and total alkali contents, and low Ti, Mg, Ca and P.
The albite granite, on the other hand, reveals a wide variation in major clement composition (8i0; = 59.4 -
75.7%: Na,0 = 2.17 - 10.36%; K0 = 0.15- 10.18%: AlLOy = 9.16-15.64%) and ranges from peralkaling to
mildly peraluminous (A/CNK = 0.8-] .15). They are distinguished by their high concentration of Ta (246-392
ppm), Wb (3281-8378 ppm), HF (2044-3263 ppm), Zr (27693-37162 ppm), Y (421 7-16948 ppm), Th {1125-
2125 ppm) and HREE (e.g. Yb = 516-3326 ppm). The rare-metal enrichment in the Tawlah albite granite is
largely controlled by hydrothermal fluids that post-date the intrusion of the granite mass. These metasomatic
fluids caused albitization and concomitant precipitation of heavy REE and other rare metals (Nb, Ta, Zr and
Y}. The significant buildup in the heavy REE and the development of prominent Eu anomalics are the
characteristic of sodium-metasomatized granites.
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1. Introduction

Rare metal granites have been identified as those with high concentrations of normally
dispersed elements such as F, Li, Rb, Cs, Sn, Ta, Nb, Zr and REE (i.e. the
metallogenically specialized granites of [1]). Such granites occupy a special place in
petrologic thinking because of their unique and often extreme chemical features. Two
fundamentally different types of rare-metal granites exist: one peralkaline (agpaitic) and
the other metaluminous to peraluminous (plumasitic or Li-F). Each type of granite has a
distinctive set of trace element characteristics and associated mineral deposits. The
peralkaline granites are extremely enriched in some trace elements, e.g. Zr, Nb and light
REE; whereas the aluminous granites are enriched in Rb, Ta, U and Sn. In general, these
granites appear to be part of the anorogenic group of granites (A-type) identified by [2,
3]. The origin of rare-metal albite-rich granites and the mechanisms of element
enrichment and distribution within them have been the subject of many studies, bui
controversy remains about the relative roles of magmatic and hydrothermal processes
(e.z. [4-9]). The central problem is that late-stage mineral replacements and zones of
hydrothermal alteration are commonly observed in these granites, making it difficult to
separate the effects of igneous fractionation from post-magmatic processes.

During the Neoproterozoic crustal evolution of the Arabian Shield, immense
volumes of granitic rocks were emplaced. They constitute about 63% of the plutonic
assemblage [10] and are subdivided into three groups, namely: 1) granodiorite and
granite-granodiorite assemblage (760-660 Ma), 2) monzogranite and syenogranite (660-
610 Ma), and 3) alkali feldspar granite (610-565 Ma). Geologic investigations by [11-13]
have identified a group of alkali granites, defined as "metallogenically specialized
granites" according to the classification of [1], which are geochemically anomalous and
contain high contents of Zn, Sn, W, Rb, Nb, Ta, Y, Zr, Th, REE and other rare metals,
but are depleted in Ba and Sr. At the Jabal Tawlah area, situated in the northwestern part
of the Arabian Shield in Saudi Arabia (Fig. 1), tin and rare metals (Zr, Nb, Ta, Y, REE)
occur within a highly evolved albite granite phase. Petrographic and mineralogical
characteristics of the Jabal Tawlah albite granite, in conjunction with geochemical and
isotopic data, have been used to develop a model for the evolution of the granites and the
formation of the associated rare-metal mineralization.

2. Geological Setting

2.1. General geology

The studied area is a part of the Bada quadrangle (Sheet 28A, international index
NF-36-16), which represents a part of the Midyan terrain between lat. 28° 00’ and 29° 00'
N and long. 34" 30’ and 36° 00 E [14]. The main rock units exposed in the map area
(Fig. 1) include: 1) Hegaf Formation, which occupies the southeastern sector of the map
area and consists of metamorphosed mafic and felsic wff, meta-andesite, metabasalt,
meta-conglomerate, mica schist, and meta-siltstone as well as subordinate calc-silicate
rocks and chert. This broad variation in lithology reflects depositional changes in an
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the formation is estimated to be about 2000 m [14], 4) The Amlas Formation 1s intruded
by monzogranite and granodiorite assigned to the 1fal suite, which are dated by U-Pb
method at 625 Ma [15], and 5) Atiyah monzogranite occurs as several circular to
subcircular plutons and stocks up to 15 km across. It intrudes rocks of the Ifal and
Sawawin but is intruded by the Midyan and Haql alkali feldspar granites and
monzogranites. The Ativah monzogranites have been dated at 598 + 30 Ma (Rb-Sr
method) and 599 + 5 Ma (U-Ph method) by [14].

2.2. Geologic setting of Jabal Tawlah

The granitic body of Jabal Tawlah occurs as an irregular elongated body (400 x 200
m) that occupies the SE part of the map area (Fig. 1). It intrudes the \’Diﬂﬂllﬂ-ﬂﬂdiﬂlcﬂiﬂr}’
rocks of the Hegaf Formation and lies at about 5 km from the castern margin of Jabal
Az-Zuhd alkali feldspar granite pluton. The contacts between this granitic body and the
country rocks are irregular, diffused and locally marked by silicification and abundant
quartz vemns (Fig. 2). The northeastern contact is partly faulted or controlled by pre-
existing fault. The lower part of the granitic body shows a marked intermixed and
amalgamated relation with its country rocks, but appears as massive whitc granite at the
top of the ridge. Silicification and abundant divergent quartz veins and pods are
common, Also, irregular white granitic patches are randomly distributed in the country
rocks of Jabal Tawlah. Many granitic patches and veinlets, similar in compaosition and
mineralogy to the Jabal Tawlah granite, are recorded in the voleanosedimentary rocks in
another location about 1 km southwest of Jabal Tawlah.

—a=" Granitic dyke

i White albite granite

== Faults with hade

Fovelcano sedimentary rocks oo Zone of granitized

EFER Quartz pads and wveins

Fig. 2. Simplified geologic map of Jabal Tawlah
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showing the location of the collected samples,
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In spite of the small size of the Jabal Tawlah granite, the rocks show great variation
in the proportion of their mineral constituents, textural relationship, abundance and
nature of accessory minerals and degree of deformation. The rocks are generally
inegigranular, locally foliated, fine- to medium-grained with grayish white to vivid white
colors but tend to be of yellowish to reddish white color in the more altered samples.
Cataclasis due to intense brecciation and deformation and later silicification are locally
well developed, particularly near their contacts with the host volcano-sedimentary rocks.
Regarding mineralization and ore minerals encountered in the Jabal Tawlah, a major part
of Th, Y, Zr , Nb, Ta and REE-bearing accessory minerals are frequently abundant as
dissemination and may reach in some samples up to 15% of the rock mode. In addition,
irregular black patches and veinlets with submetallic luster are recorded in the Jabal
Tawlah granite. These black patches are similar to those found in many Nb-Ta-bearing
albite granite (apogranite) in Abu Dabbab, Niewbi, Homrt Waggat, Egypt [16, | 7].

Based on the above-mentioned features, the rocks of Jabal Tawlah can be broadly
grouped into medium-grained albite granite, quartz syenite and porphyritic albite
cataclastic granite (cataclasites). Field radiometric invesitigation of the three rock umits
and the country rocks gave the following results: 1) The medium-grained albite granite 15
the main rock type in the Jabal Tawlah which gave high radioactive readings ranging
from 1800 cps to 2300 cps with an average value of about 1900 cps; 2) The quartz
syenite follows the medium-grained albite granite in abundance and possesses
relatively lower radioactivity commonly in the range from 1000 cps o 1400 cps; 3) The
porphyritic cataclastic albite granite 1is characterized by strong shearing and
silicification and yielded the highest gamma field radioactivity which reachs up to
3200 cps with an average value of about 2500 cps; 4) Shear zones and some quartz
veins gave also high radioactive readings commonly in the range of 1900 cps to 2500
cps; 4) The volcano-sedimentary rocks and the dykes have the lowest radioactivity
with an average value of 70 cps to 50 cps; Qilicified and bleached zones in the country
rocks (volcano-sedimentary rocks) close to the granites show variable but relatively
high radioactivity ranging from 200 cps to 1000 cps.

3. Petrography

Jabal Tawlah albite granite constitutes the main part of the Jabal Tawlah granite.
The rocks are medium-grained, hypidiomorphic, with different shades of whitish color.
The medium-grained albite granite consists of albite, quartz and microcline. Accessory
and opaque minerals are relatively abundant forming about 5 to 15% of the rock mode.
Albite (Abgg — Abgs) is the dominant mineral with an average 45% of the rock mode. The
albite crystals are medium- to fine-grained, subhedral and prismatic to lath-like. The
albite laths exhibit interpenetrating and interlocking textures, while in other samples they
display subparallel alignment around the elongated and deformed coarse-grained quartz
and microcline crystals, The black patches found in some rock samples represent
actually cluster aggregates of albite laths that are delineated with black to decp brown
materials mostly of iron oxides. Quartz follows albite in abundance forming about 25 to
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30% of the rock mode. The quartz crystals are medium-grained, anhedral and highly
strained with the development of strong undulose extinction. Poikilitic inclusions of
albite and microcline crystals in quartz are common. Microcline is present as fine grains
of subhedral to anhedral form. Zircon, thorite, titanite, fluorite, apatite and many deep
brown to black grains (opaques) are frequently abundant. They are sporadically scattered
in the rock, but in some rock samples are clustered in aggrepates. Thorite is the most
abundant accessory mineral in the rock. The crystals of thorite are subhedral to anhedral
with inclusions of very fine albite laths and iron oxides. Many crystals of thorite are
partially mitamictized and covered with amorphous blackish brown materials. Zircon
follows thorite in abundance and occurs as minute colorless and clear crystals with
subhedral to anhedral form. Fluorite occurs as large anhedral crystals with irregular
form. Some crystals of fluorite contain relict inclusions of feldspar.

The J. Tawlah quariz syenite is of limited distribution and occurs in the southeast
and extreme northwest of Jabal Tawlah granite occupying the central part of the pluton.
It consists of microcline, quartz and subordinate albite and biotite. Some rock samples
are foliated, slightly deformed and affected by silicification. Microcline crystals
constitute about 60% of the rock mode. They are fine-grained but few large phenocrysts
are common forming cluster aggregates. Quartz crystals are fine-grained with anhedral
granular and amoeba-like form. They are generally strained with severe undulose
extinction. Relatively large crystals contain abundant inclusions of microcline. Albite
crystals are fine to medium-grained, subhedral with prismatic to lath-like shape. Some
medium-grained albite crystals show “chessboard” structure [18]. The texture reflects a
low temperature structural state of the feldspar due perhaps to subsolidus modification.
Biotite is present as fine-grained flakes of pale brown color. Most of the biotite flakes
occur in vein-like form or filling fracture. Accessory minerals in the quartz microsyenite
are less abundant than the fine-grained albite granite and include thorite, zircon, fluorite
and abundant opaque minerals.

Jabal Az-Zuhd consists of two main rock types. These are aegirine-arfvedsonite
alkali granite and alkali feldspar granite. The aegirine-arfvedsonite alkali granite is
hypersolvous, coarse- to very coarse-grained with an average grain size of about 8 mm.
It is equigranular hypidiomorphic with grayish white, greenish gray to pale pink color
and consists of microcline, microcline microperthite, quartz, aegirine and arfvedsonite.
Accessory minerals include zircon, rutile and allanite. K-feldspar includes microcline
and microcline micro-to cryptoperthite. The K-feldspar crystals are coarse-gramed and
of subhedral to anhedral form, constituting 60 to 70% of the rock mode. Quartz crystals
are coarse gramed, anhedral and slightly deformed. Alkali pyroboles include aegirine,
arfvedsonite and minor riebeckite. Aegirine crystals of olive-green color are fine-grained
and weakly pleochroic. Some crystals are partly replaced by arfvedsonite with relicts of
aegirine retained in the core of the coarse arfvedsonite crystals.

The northern granite is a subsolvus monzogranite that represents the main rock
type in the pluton. The rock consists of rather equal proportions of quartz, plagioclase
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feldspar, K-feldspar (micro- and mesoperthites) and minor biotite. Zircon, apatite and
iron oxides are the common accessory minerals. Secondary alteration minerals include
chlorite, sericite, calcite, iron oxides and clayey minerals.

4. Geochemistry

4.1. Sampling and analytical techmiques

Based on the petrographic investigations, 19 representative samples covering the
different granite varieties were selected for major and trace element analyses. Major
element compositions and Sc, Ba and Ni abundances were determined by inductively
coupled plasma-atomic emission spectrometry (ICP-AES). The remainder of trace
elements and the rare earth elements (REE) were determined by inductively coupled
plasma-mass spectrometry (ICP-MS). All the analyses were carried out at the ACME
Analytical Laboratories Ltd., Canada. Analytical precision, as calculated from rephcate
analyses, is 0.5% for major elements and varies from 2-5% for trace elements of =80
ppm, 2-10% for trace elements of 10-80 ppm, and 5-20% for trace elements of <10 ppm.

Isotopic ratios of Sr and Nd and the concentrations of Rb, Sr, Sm and Nd were
determined by isotopic dilution analysis, except samples with high concentration of Rb
and Sr were determined by X-ray fluorescence (XRF). The analyses were determined at
the Geology Department, Bergen University, Norway using a VG 354 and Finnigan
MAT 262 mass spectrometer. The 87G./%Qr and the "*Nd/'**Nd ratios were normalized
within runs to *'Sr/® Sr = 0.1194 and 1o **Nd/"**Nd = 0.7219. Laboratory values for
standards at the time of running the samples were: Johanson and Matthey (JM) Nd; O,
batch No. S819093A yielded "“Nd/'¥Nd = 0.511101 = 15 (2 o); NBS 987 yielded *'St/™
Sr = 0.71015 + 0.00004 (2 o, mean). The laboratory total system blank were generally
< 1 ng for Sr and Nd. Initial 434/ Nd and ¥'St/* Sr were calculated for individual
samples at the time of crystallization and are expressed in €4 and €'g, using present-day
g NG — 0.1967: Nd/Nd = 0.512638; Rb/* Sr = 0.0827 and = Sr/ e
0.7045 [19, 20]. The decay constant (I) used for 1479 m is 6.54 1077 y' and for 87Rb is
1.42 x 10" v [21]. Model Nd ages (Tpm) were calculated according to the depleted
mantle model of [22].

4.2. Major and trace element variations

Major and trace element analyses of Jabal Tawlah granite are presented in Table 1.
Analyses of the nearby granites are also included for comparison — three samples from
Az-Zuhd alkali feldspar granite and two analyses from the northern granite. The albite
granite of Jabal Tawlah reveals a wide variation in major element composition (510, =
56.4 - 75.7%: Na,0 = 2.17 - 10.36%; K;0 = 0.1>- 10.18%; ALO; = 9.16-15.64%). The
quartz syenite, on the other hand, shows a more homogenous and restricted composition
than the albite granite. In addition, all the specimens have high Fe/Mg and total alkali
contents, and low Ti, Mg, Ca and P. Most of the major element variation diagrams
(Fig. 3) show a rather scatier with no definite trend. The major elements discrepancies
leave their signature on the albite granite. The rocks of the albite granite have a wide
AJCNK molar ratio (0.8-1.15) and A/NK (0.9-] 1), and on Shand diagram [23] they
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range from peralkaline to metaluminous and mildly peraluminous character (Fig. 4a).
The quartz syenite and Az-Zuhd granites are of peralkaline character. The alkalinity of
the rocks in relation to their tectonic setting is shown on the R1-R2 diagram [24].
Although all the rocks (albite granite, quartz syenite of Jabal Tawlah and the alkali
feldspar granite and aegirine riebeckite granite of Jabal Az-Zuhd) follow the alkaline
trend (Fig. 4b), they have large R1 values (R1 = 250-3100). The Tawlah quartz syenite
samples plot in the anorogenic field, while the Az-Zuhd granites and some albite granite
straddle the anorogenic and post-orogenic fields.

Concentrations of a wide variety of trace elements are shown in Table 1. The trace
element compositions of the specimens from the Tawlah granite define two geochemical
groups, especially on the diagrams which involve incompatible high field strength
elements (Fig. 3), and indicate that the pluton is chemically zoned. The two groups
produce different arrays on the plots of two elements. The albite granite is distinctive
because of its high concentrations of some incompatible irace elements. Rubidium
contents range from less than 200 ppm to nearly 1000 ppm. Likewise, the albite granite
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15 enriched relative to the quartz syenite and the nearby Az-Zuhd and northern granites in
Y, Nb, Ta, Zr, Hf, 5n, U and Th. Light rare earth element (LREL) concentrations are
similar to those in many other silicic rocks, but heavy REE (HREE) contents are strongly
elevated. Elements concentrated in feldspars (Sr, Ba, Eu) and mafic silicates (Co, Cr) are
strongly depleted. On the mantle normalized trace element diagrams (Fig. 5), trace
element concentrations show complex and wide vanation in the Tawlah albite rocks
compared with the other alkaline granites. The quartz syenite shows more regular
variation patterns with element enrichment and depletion similar to many rare-metal
bearing types of granite. The albite granite of Jabal Tawlah shows marked enrichment in
HFS elements (Zr, Hf, Nb, Ta, Y and HREE) and some LIL elements (Rb, Cs, Th, U)
and depletion in K, Ba, Sr, Ti and LREE.
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Fig. 5. Primitive mantle-normalized multi-element diagrams for the investigated granites. Normalizing
values are from |27].

The REE patterns of specimens from the different granite varieties in the area are
subtly distinct (Fig. 6). The alkali feldspar granite of Jabal Az-Zuhd show moderate
fractionated REE patterns (La’Yb, = 2.5-4.6; La/Sm, = 1.7-2.2) and negative Eu
anomalies (Ew/'Eu* = 0.4-0.5). One sample (aegirine arfvedsonite peralkaline granite) is
characterized by HREE enrichment (Gd/Yb, = 0.08) and stronger negative u anomaly
(EwEu* = 0.07). The northern granites have more fractionated LREE pattern (La/Yb,, =
5.3-6.8) and smaller Eu anomaly than Az-Zuhd granites. The Jabal Tawlah quartz
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syenite show positive fractionated REE (La/Yb, = 0.2-0.7, Gd/Yb, = 0.3-1.0), flat LREE
(La/Sm, = 0.96-1.57) and strong negative Eu anomalies (Ew/Eu* = 0.09-0.15). The albite
granite shows characteristic REE pattern with flat and variable LREE enrichment
(La/Sm, = 0.13-0.99), strong positive HREE fractionation (Gd/Ybn = 0.05-2.3) and
moderate negative Eu anomalies (EwEu* = 0.04-0.21). Unlike the quartz syenite, the
albite granites have extreme REE enrichment (£ REE = 1890-10559 ppm) compared
with the quartz syenite (£ REE = 182-525 ppm). This type of HREE enrichment in the
albite granite, which is 10 to 15 times that of the quartz syenite, is di ficult to explain by
normal fractional crystallization,
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Fig. 6. Chondrite-normalized REE patterns of the investigated granites. Normalizing values are from [28].

4.3. Sr and Nd isotopes
Five samples of the albite granite from Jabal Tawlah were analyzed for Rb-5r and

Sm-Nd isotope and the whole rock analytical data are given in Table 2. Regression of the
Sr isotopic data presented in Table 2 yield an age of 636 + 74 Ma and an initial Y7Sr*Sr
ratio of 0.7008 +14, MSWD = 88 (Fig. 7a). The large errors in the age and intercept
probably reflect variable wall rock interaction as a result of variation of the fluid
chemistry and/or composition of the wall rock. The Sm-Nd isotopic analyses of four
samples presented in Table 2 are plotted in Fig. 7b. The four analytical points define a
good linear correlation (MSWD = 0.87) when plotied on the ING/Nd versus
g m/"“Nd isochron diagram. The slope of this isochron corresponds to an age of 607 +



EHT.LLM

34

Talal M. Qadhi

14 Ma. This age appears to reflect either the time of intrusion of the granite or it may
reflect the age of hydrothermal alteration. The initial '“Nd/"*Nd ratios, as represented by
Eng, Vary between +4.2 and +5.9, which indicate that the studied rocks were derived from a
Juvenile source, and preclude the presence of old continental crust in the study area.

Table 2. Rb-5r and Sm-Nd data for the Jabal Tawlah granice

Sample No. "Rb™Sr  "Sr/*Sr(t2e) "Sm/'Nd  "ONdNd(:26) e'xy Tow (GA)
T-4 1.16 0710406 + 10 0.133 0,512611 = 15 424 (.74
T-8 24.75 0.929083 + § 1.5610) (0,518315= 9 4,78 (.60
T-34 4.03 (L73803T7 + 9 0.215 0.513008 = 6 5.62 0.67
T-45 (.88 0.70B652 + © (.791 5153156 5.93 0.61
T-47 0.26 0.703992 + 10

The 20 standard error in "'Rb/**Sr and '*'Sm/"*Nd is 1%. Analytical uncertainties in * St/ St used to weigh the
regression and calculate the MSWD are 0.2%
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Fig. 7. Rb-8r and Sm-Nd whole rock isochrones of the Jabal Tawlah albite granite.
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5. Discussion

5.1. Petrogenesis of the Tawlah granite

The mineralogical composition and the overall chemical characteristics of Jabal
Tawlah, Jabal Az-Zuhd and the northern granite (e.g. depletion of Ca, Mg and Sr and
high FeO*MgO, (Na,0O+K.0)/CaO and Ga/Al with marked enrichment in HFS
elements) are consistent with the characteristics of A-type granitoids [29-32]. However,
one of the most striking features of Jabal Tawlah granite is the great chemical
heterogeneity in terms of their major and trace element contents, particularly as
demonstrated in the albite granite. This chemical heterogeneity is consistent with the
field and petrographic observations, which define the role of hydrothermal fluids in the

genesis of the albite granite.

To test the role of magmatic process or the post-magmatic modification
(metasomatism), the normative composition of the investigated rocks are plotied in the
Q. Ab, Or haplogranite system (Fig. 8). Experimentally, the locations of the minimum
melt composition, in the presence of 0, 1, 2 and 4 wt.% fluorine at 1 kbar H,O are
indicated [33]. The northern granite, Az-Zuhd and the quartz syenite of Jabal Tawlah
plot close to the minimum composition in the presence of 0, 1, 2 and 4 wt.% fluorine.
The albite granite of Jabal Tawlah shows a rather scatter and cannot be correlated with
the pseudoternary minima of the haplogranite —H>O-F system (Fig. 8). For this reason,
we use here the quartz syenite (less affected by metasomatism) to discriminate the
tectonic setting of the Jabal Tawlah granite. On the Nb versus Y diagram (Figs 9a),
which has been devised to discriminate between granites from different tectonic settings
[34], the Jabal Az-Zuhd and Tawlah granites plot in the within-plate granite field. The
northern granite, on the other hand, plot in the volcanic arc field. Using diagrams for A-
type granite discrimination [29], the Jabal Tawlah quartz syenite 1s mainly classified as

A-type granite.
QZ

1%F
O EE aur \
. . -l L4 .-.- i
AB OR

Fig. 8. Normative Q-Ab-Or plot of the investigated granites. Grey squares are minimum normative
composition for the haplogranite system with 0, 1, 2 and 4% added fluorine at 1 kbar [33].
Symbols as in Fig. 3.
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Fig. 9. Tectonic discrimination diagrams for the investigated granites. (a) ¥ vs. Nb diagram [34], VAG =
volcanic arc granite, syn-COLG = syn-collision granite, ORG = ocean ridge granite, WPG =
within plate granite; (b) (Ki0+Na,O0)CaO wvs. Zr+Nb+Ce+Y discrimination diagram [29].
Symbols as in Fig. 3.

Some compositional variations observed in the quartz syenite are compatible with
the partitioning of elements between a silicic melt and minerals crystallizing from that
melt (e.g. fractionation of plagioclase, alkali feldspar and biotite). Their major and trace
element composition defines nearly systematic variation trends on variation diagrams
(Fig. 3). Also, the REE patterns and the multi-element spider-diagrams (Figs. 4a,b)
display negative Eu, Sr, Ba, Ti and P anomalies, which indicate fractionation of
feldspars, mica, Fe-Ti oxides and apatite. In recent years, four models have been
proposed for the origin of A-type granites, namely: 1) partial melting of lower crust
followed by fractional crystallization [35-37], 2) fractional crystallization of mantle-
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derived mafic magma [38-40], 3) contamination of mafic mantle-derived melt by lower
crustal components [41], and 4) mixing of crustal-derived and mantle-derived melts in
the lower crust [42]. In the studied area, there 1s little evidence in favor of extensive
wall-rock assimilation and magma-mixing as responsible for the chemical variations
observed in the studied granites. Also, the absence of mafic rocks, of the same age as the
investigated granites, precludes their direct fractionation of basaltic magma, Thus, the
magma source of the investigated post-collision A-type gramtes 1s most probably a
crustal source. The lower crust in the Arabian-Nubian Shield is juvenile (700 - 900 Ma)
and composed of mafic layer of modified oceanic crust and mafic cumulates [43, 44].
These rocks are attractive sources to produce tonalitic melts with low Si0; content (52 -
55%) at lower crustal pressures [45, 46]. Thus, it is possible that the studied A-type
granites could have been derived from tonalitic magma by fractional crystallization.

5.2. Origin of the rare metal mineralization

Many workers suggested that the REE enrichment in anorogenic alkaline and
peralkaline granites are largely due to fluid and volatile transfer associated with alkal
metasomatism [47, 48)]. The Tawlah albite granites show selective enrichment of HREE
over the LREE (Gd/Ybn < 1) in contrast to the behavior of REE in most alkaline and
peralkaline granites. This feature suggests that other processes may control the
abundance of REE and their behavior in Tawlah. The lack of experimental data,
concemning the partition coefficient of REE between the hydrothermal solutions and
minerals either during precipitation or interaction with source [49], put some constraint
on the evaluation of the behavior of REE in hydrothermal system. Melt/vapor
experiments have shown that REE do not partition favorably into aqueous vapor phases
at low pressure but become mobile at pressure around 20 k bar [50]. CO; vapors tend to
concentrate REE especially LREL.

Hydrothermal transport of REE was documented by many workers [51-35].
Limited experimental data suggest that REE (Cl, F)'; may be the most stable complex at
25°C, 1 bar, in Cl—and F—rich solution [56-58] suggested that F-rich fluids facilitated
REE mobility in the Corubian granite by complexing Zr, thus destabilizing REE-
bearing zircons. These data suggest an important role for F complexes in adition to CO;
in mobilizing REE in low-pressure hydrothermal system. Mineyev (1963) summarized
evidence for the importance of complexing in geochemical processes and found that high
concentration of the REE, especially the HREE, are associated with high concentration
of alkalis and volatiles. [59] studied the Kazakhstan massif, which had undergone a
series of alteration processes with fluids showing considerable variations in PH. He
found that the REE showed a sequence of evolution from LREE enriched near the center
of the massif to HREE enriched at the periphery, with concomitant increase in the
fluoride and alkali contents of the rock. [60] argued that very concentrated brines would
be expected to become enriched in HREE and if precipitation occurs due to the mixing
with less saline solutions, the resulting precipitates should also reflect this HREE-
enrichment. Such changes have been observed in many hydrothermal systems [60].
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According to the above discussion and available experimental work, the HREE
enrichment in the Tawlah albite granite is largely controlled by the composition of the
hydrothermal fluids (F-, Cl- or COz-enriched fluids), pH and fluid salinity. The
metasomatic fluids involved during the formation of the Tawlah albitized granites were
enriched in F-Cl and alkalies with high salinity. These metasomatic fluids caused
albitization and concomitant precipitation of HREE and other rare metals (Nb, Ta, Zr
and Y). The significant buildup in the HREE and the development of prominant Eu
anomalies are the characteristic of sodium-metasomatized granites [61].

6. Conclusions

The data presented here led to the following concluding remarks:

1. The Jabal Tawlah is a late Neoproterozoic post-collision A-type granite pluton that
intrudes island arc metavolcanosedimentary association in the Arabian Shield. Field
observations indicate that the contacts between the albite granite and the country
rocks are irregular, diffused and locally marked by silicification and abundant quartz
veins, which affect both the country rocks and the granite.

2. The Jabal Tawlah granite consists of two petrographic varieties: i) quartz syenite,
which occupies the central part of the granite mass and consists of microcline (up to
60%), albite, quartz and biotite in addition to minor accessory zircon, fluorite and
opaque minerals, ii) albite granite that occupies the outer margin of the granite mass
and consists of albite, quartz, microcline and abundant disseminations of accessory
minerals (5-15%) represented by zircon, thorite, titanite, fluorite, apatite and many
deep brown to black opaque grains.

3. The albite granmte of Jabal Tawlah reveals a wide variation in major element
composition (510, = 59.4 - 75.7%; Na,0 = 2.17 - 10.36%; K-0 = 0.15 - 10.18%;
ALO; = 9.16 - 15.64%). The quartz syenite, on the other hand, shows a more
homogenous and restricted composition than the albite granite. In addition, the
specimens all have high Fe/Mg and total alkali contents, and low Ti, Mg, Ca, and P.

4. The albite granite of Jabal Tawlah is distinguished by its high concentration of Rb,
Cs, Sn, Zn, Ta, Nb, Hf, Zr, Y, Th and HREE relative to the quartz syenite. The rare-
metal enrichment in the Tawlah albite granite is largely controlled by hydrothermal
fluids that post-date the intrusion of the granite mass. These metasomatic fluids
caused albitization and concomitant precipitation of HREE and other rare metals
(Nb, Ta, Zr and Y). The significant buildup in the HREE and the development of
prominant Eu anomalies are characteristic of sodium-metasomatized granites.

3. Crystal-melt fractionation of feldspars and biotite is the dominant process that
controls the evolution of these granites.
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